2000 Vol. 2, No. 13 1799–1801

A Facile Route to Indolo[2,1-a]isoquinolines and Dibenzopyrrocoline Alkaloids

Kazuhiko Orito,* Rika Harada, Shiho Uchiito, and Masao Tokuda

Laboratory of Organic Synthesis, Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan orito@org-mc.eng.hokudai.ac.jp

Received March 14, 2000

ABSTRACT

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{4}
 R^{2}
 R^{4}
 R^{2}
 R^{2}
 R^{4}
 R^{2}
 R^{4}
 R^{5}
 R^{5}
 R^{5}

Treatment of 1-(2'-bromobenzyl)-3,4-dihydroisoquinolines 2 in the presence of K_2CO_3 in boiling DMF efficiently provided a variety of alkoxy-substituted indolo[2,1-a]isoquinolines 3. Application of this cyclization to 7-benzyloxyisoquinoline derivatives, followed by further elaboration of the resultant 2-benzyloxy-5,6-dihydroindolo[2,1-a]isoquinolines 16a,b, led to the formal synthesis of dibenzopyrrocoline alkaloids, (\pm) -cryptaustoline (1a) and (\pm) -cryptowoline (1b).

Indolo[2,1-a]isoquinoline has a unique nitrogen-containing tetracyclic structure, characteristic of dibenzopyrrocoline alkaloids, cryptaustoline **1a** and cryptowoline **1b**, isolated

indolo[2,1-α]isoquinoline

1a: cryptaustoline R¹=R²=OMe

1b: cryptowoline R¹+R²=OCH₂O

from the bark of *Cryptocarya bowiei*.^{1,2} Several methods for construction of this structure,^{3–8} including the well-known benzyne reaction³ or oxidative coupling⁴ of 1-benzylisoquinolines, have been reported. Antileukemic and antitumor activities of such bases have been reported, and their ammonium salts have been expected to enhance the activities.^{31,9}

As shown in Scheme 1, we initially encountered this structure in the intramolecular cyclization products of *erythro*-1-[(2'-bromopheny)hydroxymethyl]-1,2,3,4-tetrahydroisoquinolines **5**, which were prepared in three more

⁽¹⁾ Ewing, J.; Hughes, G. K.; Ritchie, E.; Taylor, W. C. Nature 1952, 169, 618-619; Aust J. Chem. 1953, 6, 78-85.

⁽²⁾ For a review, see: Eliott, I. W. In *The Alkaloids*; Brossi, A. Ed.; Academic Press: Orlando, 1987; Vol. 31, pp 101–116.

^{(3) (}a) Kametani, T.; Ogasawara, K. J. Chem. Soc. C 1967, 2208–2212. (b) Benington, F.; Morin, R. D. J. Org. Chem. 1967, 32, 1050–1053. (c) Kametani, T.; Fukumoto, K.; Nakano, T. J. Heterocycl. Chem. 1972, 9, 1363–1366. (d) Kametani, T.; Shibuya, S.; Kano, S. J. Chem. Soc., Perkin Trans. J 1973, 1212–1214. (e) Ahmad, I.; Gibson, M. Can. J. Chem. 1975, 53, 3660–3664. (f) Kessar, S. V.; Batra, S.; Nadir, U. K.; Gandhi, S. S. Ind. J. Chem. 1975, J3, 1109–1112. (g) Mak, C.-P.; Brossi, A. Heterocycles 1979, J2, 1413–1416. (h) Boente, J. M.; Castedo, L.; Rodriguez de Lera, A.; Saá, J. M.; Suau, R.; Vidal, M. C. Tetrahedron Lett. 1983, 24, 2295–2298. (i) Ambros, A.; von Angerer, A.; Wiegrebe, W. Arch. Pharm. (Weinheim, Ger.) 1988, 321, 481–486. (j) Meyers, A. I.; Sielecki, T. M. J. Am. Chem. Soc. 1991, 113, 2789–2790.

^{(4) (}a) Robinson, R.; Sugasawa, S. *J. Chem. Soc.* **1932**, 798–805. (b) Harley-Mason, J. *J. Chem. Soc.* **1953**, 1465–1466. (c) Hess, U.; Hiller, K.; Schroeder, R. S. *J. Prackt. Chem.* **1977**, *319*, 568–572.

⁽⁵⁾ Ninomiya, I.; Yasui, J.; Kiguchi, T. Heterocycles 1977, 6, 1855–1860.

⁽⁶⁾ Takano, S.; Satoh, S.; Ogasawara, K. Heterocycles, 1987, 26, 1483–1485.

^{(7) (}a) Matthew, K. K.; Menon, K. N. *Proc. Ind. Acad. Sci.* **1949**, 29A, 361–363. (b) Yasuda, S.; Hirasawa, T.; Yoshida, S.; Hanaoka, M. *Chem. Pharm. Bull.* **1989**, *37*, 1682–1683.

⁽⁸⁾ Eliott, E. W., Jr. J. Org. Chem. 1982, 47, 5398-5400.

⁽⁹⁾ Ambros, R.; von Angerer, S.; Wiegrebe, W. Arch. Pharm. (Weinheim, Ger.) 1988, 321, 743-747.

Scheme 1. Preceding Studies^{10–12}

steps of reactions from 2'-bromobenzyl-3,4-dihydroisoquinolines 2, in the presence of K_2CO_3 . ^{10,11} Recently, we reported Bu_3SnH -induced aryl radical cyclization, which competitively gave 5,6-dihydroindolo[2,1-a]isoquinolines 3 and aporphines 4 from 2. ¹² In the present study, we developed a convenient method for selective preparation of a variety of alkoxy-substituted indolo[2,1-a]isoquinolines 3 from the same substrates 2, involving 3a-d, which cannot be obtained by the benzyne method noted above. ³

Scheme 2. Synthesis of 5,6-Dihydroindolo[2,1-*a*]isoquinolines

entry isolated yields and mps of 3

R⁵=H

2a: R^1 = R^2 = R^3 = R^4 =OMe 95 % mp 193-195 °C (A) **2b**: R^1 = R^2 =OMe, R^3 + R^4 =OCH₂O 92 % mp 198-200 °C (B) **2c**: R^1 + R^2 =OCH₂O, R^3 = R^4 =OMe 78 % mp 177-180 °C (B) **2d**: R^1 + R^2 = R^3 + R^4 =OCH₂O 95 % mp 205-206 °C (A)

 $R^3=H$ **2e**: R¹=R²=R³=R⁴=OMe mp 207-208 °C (C]^a 95 % **2f**: $R^1 = R^2 = OMe$, $R^3 + R^4 = OCH_2O$ 95 % mp 241-242.5 °C (C) **2g**: $R^1 + R^2 = OCH_2O$, $R^3 = R^4 = OMe$ 89 % mp 212-216 °C (C) **2h**: $R^1 + R^2 = R^3 + R^4 = OCH_2O$ 79 % mp 214-217.5 °C (C) 2 i: R¹=R²=OMe, R⁴=R⁵=H 83 % mp 177.5-179.5 °C (B) **2 j**: $R^1 + R^2 = OCH_2O$, $R^4 = R^5 = H$ 76 % mp 189-193.5 °C (B)

Solvents for crystallization: A, EtOH; B, MeOH-CH $_2$ Cl $_2$; C, MeOH-Et $_2$ O

a: lit. 1 mp 199 °C; 4a 201-203 °C; 3d 202-203 °C; 3a 202-204 °C; 8,10 204-205 °C; 3g,i 209-210 °C When substrates **2a**–**d** with an alkoxy group at their 3′ position or substrates **2e**–**j** without the alkoxy group, including the compounds **2i** and **2j** having no substituent on the phenyl group except for a Br atom, were heated in the presence of 2 mol equiv of K₂CO₃ in boiling DMF for 3 days (Scheme 2), the corresponding 5,6-dihydroindolo[2,1-*a*]isoquinolines **3** were obtained in 76–95% isolated yields by crystallization. Dimeric products at their C-12 position were not detected at all. ^{3g,4c,7b} The cyclization did not proceed without alkali. K₃PO₄ worked well, similarly to K₂CO₃, but stronger bases such as BuLi and KO'Bu, did not. Replacement of DMF with DMSO resulted in the formation of a black tar.

Under the same conditions, the 2'-iodo derivative **6a** was consumed much faster than the bromide **2a**, and the cyclization finished within 1.5 days. However, its 2'-methoxy derivative **6b** was recovered unchanged. The cyclization of a readily accessible 3'-bromopapaverine **7**¹³ also proceeded smoothly to give a fully aromatized indolo[2,1-*a*]isoquinoline **8**, mp 225.5–228.0 °C (MeOH, lit.³ⁱ mp 210 °C), within 2 days quantitatively (Scheme 3), although DDQ oxidation of **3e** gave **8** (65%).

Scheme 3. Synthesis of Indolo[2,1-*a*]isoquinoline **8**

MeO
$$\times$$
 X \times 2CO3 DMF reflux N2 MeO \times MeO

It had been reported that the thermal electrocyclization of a pentadienyl anion gave a cyclopentenyl anion.¹⁴ We had assumed that such an effect might have contributed to these cyclizations (Scheme 4), until the following fact was disclosed. 1-Benzyldihydroisoquinoline 9, having two methyl

Scheme 4. An Assumed Thermal Electrocyclization Process¹²

1800 Org. Lett., Vol. 2, No. 13, 2000

groups at the benzyl position, also underwent a similar cyclization with loss of one methyl group to give 12-methylindolo[2,1-a]isoquinoline **10**, mp 224–226 °C (MeOH–CH₂Cl₂, lit. 9 216–217 °C) (Scheme 5). The dehydro deriva-

Scheme 5. Formation of Indolo[2,1-*a*]isoquinoline **10**

tive (11) did not cyclize and was recovered unchanged. The dihydro derivatives of 2e, 1,2,3,4-tetrahydroisoquinolines (12, 13),¹¹ were also recovered unchanged. An attempt to produce a quinoline ring using the homologue 14 failed, and it was recovered unchanged. On the basis of these results, a reaction pathway via i, ii, and iii (Scheme 6) which starts with a nucleophilic addition of the isoquinoline nitrogen and ends up in the formation of a stable conjugated system, "indole ring", was proposed for this versatile cyclization.

Application of this cyclization on 7-benzyloxy-3,4-dihydroisoquinoline ${\bf 15a}^{3a}$ and ${\bf 15b}^{3b}$ gave 5,6-dihydroindolo[2,1-

Scheme 6. A Probable Pathway to Indolo[2,1-a]isoquinolines **3. 8.** and **10**

a]isoquinolines **16a**, mp 146–148 °C (MeOH), and **16b**, mp 159–161 °C (MeOH, lit.^{3b} mp 157–158 °C), almost quantitatively (82% and 83% isolated yields by crystallization). Dihydroisoquinolines **16a** and **16b** were further converted by treatment with excess NaBH₃CN in AcOH almost quantitatively to air-sensitive tetrahydroindolo[2,1-*a*]isoquinolines **17a** and **17b**, respectively (Scheme 7). In

Scheme 7. Synthesis of Dibenzopyrrocoline Alkaloids Cryptaustoline **1a** and Cryptowoline **1b**

view of the previous conversion of these compounds into (\pm) -cryptaustoline (1a) and (\pm) -cryptowoline (1b), 3a,b,i,7b this constitutes a formal synthesis of the alkaloids.

Supporting Information Available: Characterization data for products **3**, **8**, **10**, and **16**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL005802D

Org. Lett., Vol. 2, No. 13, **2000**

⁽¹⁰⁾ Orito, K.; Miyazawa, M.; Suginome, H. *Heterocyclic Commun.* **1995**, *1*, 239–240;

⁽¹¹⁾ Orito, K.; Miyazawa, M.; Kanbayashi, R.; Tokuda, M.; Suginome, H. J. Org. Chem. 1999, 64, 6583–6596.

⁽¹²⁾ Orito, K.; Uchiito, S.; Satoh, Y.; Tatsuzawa. T.; Harada, R.; Tokuda, M. Org. Lett. **2000**, *2*, 307–310.

⁽¹³⁾ Anderson, O. Justus Liebigs Ann. Chem. 1854, 94, 235-240.

^{(14) (}a) Stapp, P. R.; Kleinschmidt, R. F. J. Org. Chem. 1965, 30, 3006—3009.
(b) Slaugh, L. H. J. Org. Chem. 1967, 32, 108—113.
(c) Bates, R. B.; McCombs, D. A. Tetrahedron Lett. 1969, 977—978.
(d) Shoppee, C. W.; Henderson, G. N. J. Chem. Soc., Perkin Trans. 1 1975, 765—772.